Slope failure analysis using the random material point method
نویسنده
چکیده
The random material point method (RMPM), which combines random field theory and the material point method (MPM), is proposed. It differs from the random finite-element method (RFEM), by assigning random field (cell) values to material points that are free to move relative to the computational grid rather than to Gauss points in a conventional finite-element mesh. The importance of considering the effects of both large deformations and the spatial variability of soil strength properties in slope stability analyses is highlighted, by comparing RMPM solutions with RFEM and deterministic MPM solutions for an idealised strain-softening clay slope characterised by a spatially varying undrained shear strength. The risks posed by potential slides are quantified by the extent of retrogressive failure – that is, due to the tendency for secondary failures to be triggered by the removal of support from the remaining soil mass caused by the initial failure. The results show that RMPM provides a much wider range of solutions, in general increasing the volume of material in the failure compared with the RFEM solutions, which are usually limited to the initial slide. Moreover, the anisotropic nature of soil heterogeneity is shown to have a significant influence on the nature and extent of failure.
منابع مشابه
تحلیل پایداری دیواره غربی معدن مس سرچشمه با استفاده از روش المان مجزای سهبعدی
In the past, rock slope stability analysis were performed either graphically or using a hand-held calculator, but nowadays there are variety of slope stability analysis which can be used according to the field condition and potential failure mode. In 2-D analysis, effect of convex and concave walls are neglected, however concave slopes are believed to be more stable than straight walls due to t...
متن کاملBack analysis of inter-ramp slope failure in Teghout copper mine
Slope stability is one of the most important issues in open pit mining design. The main purpose of any open pit mine design is to propose an optimal excavation configuration, considering safety, ore recovery and financial return. An accurate pit slope design which accounts for the mine geology, structural geology, rock mass properties, and hydrogeology models of the mine area, drastically enhan...
متن کاملInfluence of modeling material on undercut slope failure mechanism
A series of physical modeling tests were conducted by means of a beam type geotechnical centrifuge machine in order to investigate the drainage impact on the slope failure mechanism under centrifugal acceleration. Meanwhile, the phenomenon of stress redistribution in undercut slopes and the formation of arching effect were studied. For this purpose, a poorly graded sandy soil (Silica sand No. 6...
متن کاملEnhancement of random finite element method in reliability analysis and risk assessment of soil slopes using Subset Simulation
Random finite element method (RFEM) provides a rigorous tool to incorporate spatial variability of soil properties into reliability analysis and risk assessment of slope stability. However, it suffers from a common criticism of requiring extensive computational efforts and a lack of efficiency, particularly at small probability levels (e.g., slope failure probability Pf<0.001). To address this ...
متن کاملRock Slope Stability Analysis Using Discrete Element Method
Rock slope stability depends very much on the strength features of the rock and the geometrical and strength characteristics of the discontinuities (e.g., roughness, wall strength and persistence). Since a rock mass is not a continuum, its behavior is dominated by such discontinuities as faults, joints and bedding planes. Also, Rock slope instability is a major hazard for human activities and o...
متن کامل